Glial-neuronal ensembles: partners in drug addiction-associated synaptic plasticity
نویسندگان
چکیده
INTRODUCTION Drug addiction is manifested by a compulsive drive to take licit or illicit substances despite repeated severe adverse consequences (Volkow et al., 2012). Addiction is also accompanied by a vicious cycle of binges, abstinence, and relapses. Almost all drugs of abuse trigger euphoric feelings consequent to a rapid increase of dopamine levels in the mesolimbic system. Even after long periods of abstinence, addicts remain vulnerable to drug craving and/or relapses that can be triggered by stimuli previously associated with drugs (Koob and Volkow, 2010). These features of addiction suggest that drugs might cause a form of persistent neuroplasticity that is acutely responsive to environmental stimuli, with consequent compulsive drug-seeking and taking behaviors. Neural functions require the coordinated interactions of multiple neuronal cell types and a diverse population of glial cells. The three major glial cell types in the brain, astrocytes, oligodendrocytes, and microglia, communicate with each other and with neurons by using neurotransmitters, other small molecules, and gap junctions (Araque et al., 2014). Oligodendrocytes increase the speed of electrical transmission through nerve axons by forming the axonal myelin sheath and clustering ion channels at nodes of Ranvier (Nave, 2010). Microglia prune synapses in part by monitoring synaptic transmission (Schafer et al., 2013; Wake et al., 2013). Astrocytes can regulate synaptic transmission between neurons by modifying the concentration of extracellular potassium, controlling local blood flow, by releasing and/or taking up neurotransmitters or neuromodulators, by delivering nutrients to neurons, and by altering the geometry and volume of the brain extracellular space (Araque et al., 2014). This brief summary of glial functions suggests that these cells might play important roles in the long-term manifestations of substance use disorders, both in terms of addiction to these agents and their longterm neuropsychiatric consequences. In what follows, we discuss some recent findings that support the thesis that glial cells are part and parcel of the plastic mechanisms that are induced by drugs of abuse.
منابع مشابه
Corticostriatal plasticity, neuronal ensembles, and regulation of drug-seeking behavior.
The idea that interconnected neuronal ensembles code for specific behaviors has been around for decades; however, recent technical improvements allow studying these networks and their causal role in initiating and maintaining behavior. In particular, the role of ensembles in drug-seeking behaviors in the context of addiction is being actively investigated. Concurrent with breakthroughs in quant...
متن کاملنقش سلول های گلیا در پاسخ سیناپسی پایه و شکل پذیری سیناپسی کوتاه مدت ناحیه CA1 هیپوکمپ
Background and purpose: Glial cells seem to play role in synaptic plasticity because they have the ability to release trophic factors and gliotransmitters and respond to neurotransmitters. They also play important role in synaptic space homeostasis. In this study, the role of hippocampal glial cells in baseline synaptic response and short term synaptic plasticity were investigated. Material...
متن کاملInterference Peptides: a Novel Therapeutic Approach Targeting Synaptic Plasticity in Drug Addiction
Synaptic plasticity at excitatory synapses has been proposed as the cellular substrate of information processing and memory formation in the brain under both physiological and pathological conditions, including addiction. There is a growing body of evidence that implicates long-term depression (LTD), particularly in the nucleus accumbens (NAc), as a potential mediator of drug-induced neural pla...
متن کاملEffects of psychomotor stimulants on glutamate receptor expression.
It is increasingly well accepted that addiction can be viewed as a form of neuronal plasticity, even as a type of very powerful, albeit maladaptive, learning. On a behavioral level, this can be conceptualized as the transition from experimentation to compulsive drug-seeking behavior. This view of addiction has been strengthened by many recent studies demonstrating commonalities between mechanis...
متن کاملDopamine Enables In Vivo Synaptic Plasticity Associated with the Addictive Drug Nicotine
Addictive drugs induce a dopamine signal that contributes to the initiation of addiction, and the dopamine signal influences drug-associated memories that perpetuate drug use. The addiction process shares many commonalities with the synaptic plasticity mechanisms normally attributed to learning and memory. Environmental stimuli repeatedly linked to addictive drugs become learned associations, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2014